0

Full Content is available to subscribers

Subscribe/Learn More  >

Surface Micro-Scale Patterning for Biomedical Implant Material of Pure Titanium via High Energy Pulse Laser Peening

[+] Author Affiliations
Ninggang Shen, Chelsey N. Pence, Robert Bowers, Yin Yu, Hongtao Ding, Clark M. Stanford, Ibrahim T. Ozbolat

University of Iowa, Iowa City, IA

Paper No. MSEC2014-4181, pp. V002T02A099; 7 pages
doi:10.1115/MSEC2014-4181
From:
  • ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
  • Volume 2: Processing
  • Detroit, Michigan, USA, June 9–13, 2014
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4581-3
  • Copyright © 2014 by ASME

abstract

Pure titanium (commercial pure cpTi) is an ideal dental implant material without the leeching of toxic alloy elements. Evidence has shown that unsmooth implant surface topologies may contribute to the osteoblast differentiation in human mesenchymal pre-osteoblastic cells, which is helpful to avoid long-term peri-abutment inflammation issues for the dental implant therapy with transcutaneous devices. Studies have been conducted on the grit blasted, acid etched, or uni-directional grooved Ti surface. However, for these existing approaches, the surface quality is difficult to control or may even damage the implant. A novel idea has been studied in which more complex two-dimensional (2D) patterns can be imprinted into the dental implant material of cpTi by high energy pulse laser peening (HEPLP). The strong shock wave generated by HEPLP press a stainless steel grid, used as a stamp, on Ti foils to imprint a 2D pattern. In this study, the multiple grid patterns and grid sizes were applied to test the cell’s favor. The HEPLP induced shock wave pressure profile and history were simulated by a 2D multi-physics hydrodynamic numerical analysis for a better understanding of this technique. Then, the cell culture tests were conducted with the patterned surface to investigate the contribution of these 2D patterns, with the control tests of the other existing implant surface topography forming approaches.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In