Full Content is available to subscribers

Subscribe/Learn More  >

Resolving Large- and Small-Scale Structures in the Swirl Flow of a Typical Land-Based Gas Turbine Combustor Single Nozzle Rig

[+] Author Affiliations
R. K. R. Katreddy, S. R. Chakravarthy

Indian Institute of Technology, Madras, Chennai, TN, India

Paper No. GT2014-26615, pp. V04BT04A034; 10 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4569-1
  • Copyright © 2014 by ASME


The present study focuses on identifying and resolving large-scale energy containing structures and turbulent eddies in a typical gas turbine combustor single nozzle rig, using particle image velocimetry in cold flow. A generic fuel-air nozzle through a swirler is integrated with a sudden expansion square duct with optical access to perform laser diagnostics. Experiments are conducted to analyze the swirl flow field under starting and operating flow conditions. Three-component velocities are obtained in cross-sectional planes of Z/D = 0, 1.25, and 2.5 (normalized by the nozzle diameter), and two-component velocities are obtained in the mid-plane along the longitudinal (Z-) axis from Z/D = 0 to 2.5D. Velocity splitting is performed using spatial Gaussian smoothing with a kernel with filter width equal to integral scale is performed over the velocity fields to resolve the field of large-scale energy containing eddies. Proper orthogonal decomposition is performed over the large-scale velocity field, and the modes obtained indicate the existence of the precessing vortex core (PVC), formation of small scales Kelvin-Helmholtz (K-H) vortices for Z/D < 1.25D, and large-scale growing K-H structures in 1.25D < Z/D < 2.5D. Turbulent kinetic energy (TKE) is obtained from the turbulent velocity fluctuations below the integral length scale and is observed to be higher at the interface of the corner recirculation zone (CRZ) and central toroidal recirculation zone (CTRZ). Resolving the swirl velocity field obtained in the above manner into large-scale structures formed by the PVC, CTRZ, K-H vortices, CRZ, and small-scale turbulence field, indicates the clear distinction in rapid mixing zones and unsteady convective zones. The length-scales and zones of these structures within the swirl combustor are identified.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In