0

Full Content is available to subscribers

Subscribe/Learn More  >

Theoretical and Experimental Study on Phononic Crystal Structures for Low-Frequency Noise Reduction in the Brake

[+] Author Affiliations
Li Shen, Jiu Hui Wu

Xi’an Jiaotong University, Xi’an, Shaanxi, China

Paper No. IMECE2013-62423, pp. V014T15A042; 6 pages
doi:10.1115/IMECE2013-62423
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 14: Vibration, Acoustics and Wave Propagation
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5643-7
  • Copyright © 2013 by ASME

abstract

Phononic crystal is an artificial periodic structure in which elastic constants distribute periodically. In this paper, a two dimensional Bragg scattering phononic crystal was introduced into low-frequency noise reduction facility in the brake originally. Through the theoretical analysis by using Plane-wave Expansion Method to obtain the band diagram of a phononic crystal with holes periodically arranged in the 45 carbon steel plate and establishing the equivalent model in motion as the brake, we find an approximate bandgap between 0–5400Hz in the low-frequency range while the complete static bandgaps are distributed in the high-frequency range. It is believed that this kind of extremely low-frequency bandgap is due to the combination of the vibration of a single scatter and the interaction among scatters. In order to demonstrate the theory, contrastive experiment was taken. Noise spectrum diagram of the origin plate without holes was obtained in the first experiment. According to the equivalent model, the two dimensional air column/steel matrix phononic crystal structure in which filling rate was 40% was designed to apply in the test apparatus so that the frequency range (2050 to 2300Hz) of strong noise would be involved in this bandgap. Moreover, the noise in the whole frequency range (0–2550Hz) went down. This phenomenon proved that experiment result was coincident with theoretic consequence. The maximum decreasing amplitude of the noise reached as much as 25dB and the average decreasing amplitude was about 13dB from 2050 to 2300 Hz. In a word, this bandgap which is the combination effect of structure periodicity or the Mie scattering has an obvious extremely low-frequency characteristic in noise and vibration control in the brake.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In