0

Full Content is available to subscribers

Subscribe/Learn More  >

Elastomer Seal With Frictional Contact: Analytical Solution

[+] Author Affiliations
Moosa S. M. Al-Kharusi, Sayyad Zahid Qamar, Tasneem Pervez, Maaz Akhtar

Sultan Qaboos University, Muscat, Oman

Paper No. IMECE2013-64348, pp. V009T10A107; 8 pages
doi:10.1115/IMECE2013-64348
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME

abstract

Main motivation for this work is the need for performance evaluation of swelling (and inert) elastomer seals used in petroleum applications. Closed-form (analytical) solutions are derived for sealing pressure distribution along the elastomer seal as a function of material properties of the elastomer, seal geometry and dimensions, seal compression, and differential fluid pressure acting on the seal ends. Seal performance is also modeled and simulated numerically. Good agreement between analytical and numerical results gives confidence that the analytical solution can be used for reliable prediction of sealing behavior of the elastomer. Detailed investigation is then carried out to find out the effect of variation in seal design parameters on seal performance. For both analytical and numerical models, properties of the seal material at various stages of swelling are needed. Therefore, a series of experiments were also designed and conducted to study the effect of swelling on mechanical properties (E, G, K, and ν) of the sealing material.

One major finding is that sealing pressure distribution along the seal is not constant but varies nonlinearly depending on seal parameters and loading conditions, with maximum sealing pressure occurring at the center of the seal length. Longer seals are not necessarily better; after a certain seal length, sealing pressure reaches a steady value for a given set of field conditions. As expected, higher seal compression gives higher sealing pressure. Seal compression can be increased either by tubular expansion or by selecting an elastomer that swells more, or a combination of the two.

Experimental evaluation of swelling-elastomer seal performance can be very costly, and is not even possible in many cases. Numerical simulations, if validated, can be more convenient, but computational effort and cost can be high as simulations have to be run for each set of conditions. Analytical approach presented here not only gives an elegant closed-form solution, but can give reasonably accurate and much faster prediction of elastomer performance under various actual oil and gas field conditions.

Copyright © 2013 by ASME
Topics: Elastomers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In