Full Content is available to subscribers

Subscribe/Learn More  >

Observation and Evaluation of Scratch Damage Characteristics of Injection Molded, Rubber Toughened Poly(Methylmethacrylate)

[+] Author Affiliations
Jihun An, Byoung-Hyun Kang, Byoung-Ho Choi

Korea University, Seoul, Korea

Hyoung-Jun Kim

LG Electronics Inc., Pyeongtaek, Korea

Paper No. IMECE2013-63417, pp. V009T10A099; 6 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME


Poly(methylmethacrylate) (PMMA) is one of popular engineering polymers for many engineering applications such as glass substitutes, medical applications, electronic goods, optical fibers, laser disk optical media and so on. PMMA is a lightweight material with excellent optical properties and balanced mechanical properties. However, PMMA is commonly blended with various functional fillers, and rubber particles are one of them to improve the low impact toughness of unfilled PMMA comparing with other engineering polymers such as polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) copolymer and so on. PMMA is generally used to make exterior of a commercial product, so scratch characteristics of PMMA is very important in terms of the aesthetic point of view.

In this paper, rubber toughened PMMA plates are prepared by injection molding, and static and progressive scratch tests are performed. Samples are prepared by various injection molding conditions, and two orientations (machine direction and transverse direction) of the injection molded plate are considered for scratch tests. Three scratch damage mechanism stages, i.e. mar/ploughing, whitening and cutting stages, are identified by observing the scratch damages and two critical loads to define the variation of scratch damage mechanisms are recorded to evaluate the scratch resistance of rubber toughened PMMA samples. Scratch damage characteristics are examined by various microscopy techniques such as optical microscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, optical profiler and so on. It is clearly observed that scratch damage characteristics of rubber toughened PMMA are changed sensitively for various test conditions due to rubber particles, so it can be known that the mold design should be carefully optimized to improve scratch characteristics of injection molded rubber toughened PMMA product.

Copyright © 2013 by ASME
Topics: Rubber



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In