0

Full Content is available to subscribers

Subscribe/Learn More  >

New Insights Into Controlling Sub-Micron Failure Mechanisms in Composites Using Discrete Functionalized Multiwall Carbon Nanotubes

[+] Author Affiliations
Clive Bosnyak, Douglas Hunter, Andrew Stewart, Kurt Swogger

Molecular Rebar Design LLC, Austin, TX

Zhenwen Zhou

University of Illinois at Chicago, Chicago, IL

Paper No. IMECE2013-62501, pp. V009T10A093; 5 pages
doi:10.1115/IMECE2013-62501
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME

abstract

New technology has been developed that enables multiwall carbon nanotubes to be discrete, high aspect ratio and well bonded to the composite matrix of choice. Several composite types are examined using tubes of diameter about 12 nm and length about 700nm. Fully discrete, well-bonded tubes are shown to significantly enhance the matrix resistance to fracture and can be placed between fiber plies of composites. The challenges of maintaining the exfoliated state of discrete multiwall carbon nanotubes during composite part assembly from the liquid prepolymer to the cured part are discussed.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In