Full Content is available to subscribers

Subscribe/Learn More  >

Fracture Toughness Variation Induced by Geometric Confinement in Nanostructures

[+] Author Affiliations
Shao-Huan Cheng, C. T. Sun

Purdue University, West Lafayette, IN

Paper No. IMECE2013-64976, pp. V009T10A088; 6 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME


The multiscale process of material failure from the interatomic bond breaking to the visible crack propagation leads us to explore the validity of linear elastic fracture mechanics (LEFM), particularly for fracture toughness as a constant from nanoscale to macroscale. In the current study, by considering the local virial stress averaged within one lattice, we overcome the barrier of ambiguous crack-tip stress field in molecular dynamics (MD) and perform direct estimation of fracture toughness not through remote stresses. By changing the specimen geometry, i.e., either the crack length or the specimen height (the dimension perpendicular to the crack line), the MD and corresponding finite element method (FEM) solutions show that fracture toughness decreases as the crack length or specimen height decreases. Consequently, fracture toughness cannot be treated as a material constant for nanostructures. The size of the singular stress zone (K-dominance zone) is used to explain the size-dependent behavior of fracture toughness. While the crack length or specimen height decreases, the decreasing K-dominance zone makes the singular part around the crack tip stress not capable of accounting for the full fracture driving force.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In