Full Content is available to subscribers

Subscribe/Learn More  >

Multiscale Modeling of Nano-Reinforced Structural Adhesive Bonds

[+] Author Affiliations
Jacob M. Wernik, Shaker A. Meguid

University of Toronto, Toronto, ON, Canada

Paper No. IMECE2013-64978, pp. V009T10A081; 9 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME


In this work, the mechanical properties of carbon nanotube reinforced structural adhesive bonds are investigated both theoretically and experimentally. The theoretical investigations employ a novel multiscale modeling technique that integrates governing atomistic constitutive laws in a continuum framework. This technique takes into account the discrete nature of the atomic interactions at the nanometer length scale and the interfacial characteristics of the nanotube and the surrounding polymer matrix. Appropriate formulations are developed to allow for the atomistic-based continuum modelling of nano-reinforced structural adhesive bonds on the basis of a nanoscale representative volume element that accounts for the nonlinear behaviour of its constituents; namely, the reinforcing carbon nanotube, the surrounding adhesive and their interface. This model is used to evaluate the constitutive response of carbon nanotubes with varied chiral indices. The newly developed representative volume element is then used with analytical micromechanical modeling techniques to investigate the homogeneous and dispersion of the reinforcing element into the adhesive considered upon the linear elastic properties.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In