Full Content is available to subscribers

Subscribe/Learn More  >

Atomistic Simulations of Fatigue Crack Growth in Single Crystal Aluminum

[+] Author Affiliations
Enqiang Lin, Yongming Liu

Arizona State University, Tempe, AZ

Paper No. IMECE2013-66084, pp. V009T10A075; 4 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME


The behaviors of model-I fatigue crack propagation behaviors under different strain cycles in single crystal aluminum have been systematically investigated by molecular dynamic and quasicontinuum method with embedded atom potential. Four different crack orientations: (010)[001], (111)[11-2], (110)[001] and (101)[10-1] are investigated by using the edge-crack model. Different fatigue crack growth mechanisms such as cleavage crack propagation, twinning and dislocation emission are observed. Premature crack surface contact during the unloading path is also observed for the (010)[001] crack, which is consistent with the crack closure hypothesis in the classical fatigue theory. The relationship between local deformation and crack growth kinetics are identified by using crack tip increments and crack tip opening displacement (CTOD) profiles at the selected stress cycle. The results show that crack only grows during part of the loading path and no crack growth during the unloading path, which are well in agreement with our previous in-situ SEM observations.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In