Full Content is available to subscribers

Subscribe/Learn More  >

Concurrent Multiple-Time-Scale Simulations With Improved Numerical Dissipation for Structural Dynamics

[+] Author Affiliations
Tejas Ruparel, Azim Eskandarian, James Lee

George Washington University, Washington, DC

Paper No. IMECE2013-64642, pp. V009T10A073; 11 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME


Work presented in this paper describes the formulation for implementation of a concurrent multiple-time-scale integration method with improved numerical dissipation capabilities. This approach generalizes the previous Multiple Grid and Multiple Time-Scale (MGMT) Method [1] implemented for the Newmark family of algorithms. The framework is largely based upon the fundamental principles of Lagrange multipliers used to enforce workless nonholonomic constraints and Domain Decomposition Methods (DDM) to obtain coupled equations of motion for distinct regions of a continuous domain. These methods when combined together systematically yield constraint forces that not only ensure conservation of energy but also enforce continuity of velocities across the interfaces. Multiple grid connections between (non-conforming) sub-domains are handled using Mortar elements whereas coupled multiple-time-scale equations are derived for the Generalized-α Method [2]. We show that MGMT Method can be easily extended to incorporate the Generalized-α family of time integration algorithms, hence allowing selective discretization in space and time along with controlled numerical dissipation for distinct grids. We also show that interface energy across connecting sub-domains is identically zero, further assuring global energy balance and continuity of velocities across connecting sub-domains.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In