0

Full Content is available to subscribers

Subscribe/Learn More  >

Tailored Polyurea-Glass Interfaces and the Characterization by the Single-Fiber Fragmentation

[+] Author Affiliations
Zhanzhan Jia, Ravish Rawal, Jon Isaacs, Sia Nemat-Nasser

University of California, San Diego, La Jolla, CA

Paper No. IMECE2013-63736, pp. V009T10A061; 2 pages
doi:10.1115/IMECE2013-63736
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME

abstract

Polyurea is an elastomer that has been intensively researched due to its excellent thermal and mechanical properties. Polyurea based composite material has recently become a research interest to further explore what this polymer has to offer. In order to better understand the overall static or dynamic mechanical properties of the polyurea based composites, how to tailor and characterize the polyurea-filler interface has become a crucial problem. This study focuses on one of the filler materials, glass. Three types of polyurea-glass interfaces are studied by using silane reagents that have similar molecular structures but with different end functional groups to modify the glass surfaces. Accordingly, bonds with different strengths are formed between the glass and the polyurea through the different chemical character of the reagent molecules. The polyurea-glass interfacial properties are tested by the single-fiber fragmentation, which is a widely used method to test the shear properties of the interface between the fiber and the polymer. Single-fiber fragmentation samples are fabricated by casting a single glass fiber along the axial direction of the dogbone-shaped polyurea tension test sample. Tension tests are conducted and the continuous photoelastic videos are taken to observe the single fiber fragmentation process until the fragmentation reaches its saturation state. Meanwhile, stress-strain data are recorded. By analyzing the single-fiber fragmentation data, the polyurea-glass interfacial shear strengths are calculated. The observation of the debonding zones at the interface is used to find the approximate models for the interfacial shear adhesion of polyurea-glass interfaces for different reagents, hence proving the potential for tailoring of the interfacial strength using surface treatment.

Copyright © 2013 by ASME
Topics: Glass , Fibers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In