Full Content is available to subscribers

Subscribe/Learn More  >

A Lattice Boltzmann Approach for Directional Transporting of Droplets Using Heterogeneous Surface Roughness

[+] Author Affiliations
Jung Shin Lee, Joon Sang Lee

Yonsei University, Seoul, Korea

Paper No. IMECE2013-65533, pp. V009T10A041; 7 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME


Fluid droplet on a surface with roughness has been simulated to investigate the hydrophobicity of surface and also measure the increase in contact angle (CA). Surface roughness increases the area of solid-liquid interface and this increase in composite interface makes the water to repel solid surface, thus causing an increase of the CA. Recently heterogeneous structure surface, which is pillar or rib structures with gradually changing pitches in certain direction, has gained lot of interest from researchers because wetting characteristics of those structures allow droplet movement without external forces. In this paper, droplet movement for heterogeneous surface cases are simulated with the computational fluid dynamics (CFD) modeling, known as Lattice Boltzmann method (LBM). First part of the study concentrates on droplet transportation. Half of the surface is more-hydrophobic region, textured with microscopic pillars and the other part of surface is less-hydrophobic, textured or smooth surface. Second part of the study concentrates on droplet breakup. More-hydrophobic textured band is located at center of less-hydrophobic textured surface. To see the effect of surface structure only, we choose same chemical property for all surfaces. Water droplets are spatially placed on border line of the different textures of surface. The simulations are carried out using projection method of LBM. Projection method has been used to in this study to be able to model the large density difference between air and water. Two phase immiscible fluids flow consisting of air and water (density ratio of air to water = 1:1000) is built in 3D space by using Projection method. This method can calculate solid-liquid-gas composite interface.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In