Full Content is available to subscribers

Subscribe/Learn More  >

Integration of Carbon Nanotubes Into a Fiberglass Reinforced Polymer Composite and its Effects on Electromagnetic Shielding and Mechanical Properties

[+] Author Affiliations
Mehran Tehrani, Ayoub Y. Boroujeni, Majid Manteghi, Marwan Al-Haik

Virginia Tech, Blacksburg, VA

Zhixian Zhou

Wayne State University, Detroit, MI

Paper No. IMECE2013-65202, pp. V009T10A024; 7 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME


Electromagnetic (EM) waves, such as electronic noise and radio frequency interference can be regarded as an invisible electronic pollution which justifies a very active quest for effective electromagnetic interference (EMI) shielding materials. Highly conductive materials of adequate thickness are the primary solutions to shield against EMI. Equipment cases and basic structure of space aircraft and launch vehicles have traditionally been made of aluminum, steel and other electrically conductive metals. However, in recent years composite materials have been used for electronic equipment manufacturing because of their lightweight, high strength, and ease of fabrication. Despite these benefits, composite materials are not as electrically conductive as traditional metals, especially in terms of electrical grounding purposes and shielding. Therefore, extra effort must be taken to resolve these shortcomings. The present work demonstrates a study on developing hybrid composites based on fiberglass with surface grown carbon nanotubes (CNTs) for EMI applications. The choice of fiberglass is primarily because it naturally possesses poor electrical conductivity, hence growing CNTs over glass fiber surface can significantly improve the conductivity. The fabrics were sputter-coated with a thin layer of SiO2 thermal barrier prior to growing of CNTs. The CNTs were grown on the surface of woven fiberglass fabrics utilizing a relatively low temperature technique. Raw fiberglass fabric, SiO2 coated fabric, and SiO2 coated fabric which was subjected to the identical heat treatment as the samples with CNTs were also prepared. Two-layers composite specimens based on different surface treated fiberglass fabrics were fabricated and their EMI shielding effectiveness (SE) was measured. The EMI SE of the hybrid CNT-fiberglass composites was shown to be 5–10 times of the reference samples. However, the tensile mechanical properties of the composites based on the different above mentioned fibers revealed significant degradation due to the elevated CNT growth temperature and the addition of coating layer and CNTs. To further probe the structure of the hybrid composites and the inter-connectivity of the CNTs from one interface to another, sets of 20-layers composites based on different surface treated fabrics were also fabricated and characterized.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In