Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Alloying Elements on Creep and Fatigue Damage of Ni-Base Superalloy Caused by Strain-Induced Anisotropic Diffusion

[+] Author Affiliations
Ken Suzuki, Tomohiro Sano, Hideo Miura

Tohoku University, Sendai, Miyagi, Japan

Paper No. IMECE2013-64314, pp. V009T10A016; 6 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME


In order to make clear the mechanism of the directional coarsening (rafting) of γ′ phases in Ni-base superalloys under uni-axial tensile strain, molecular dynamics (MD) analysis was applied to investigate effects of alloying elements on diffusion characteristics around the interface between the γ phase and the γ′ phase. In this study, a simple interface structure model corresponding to the γ/γ′ interface, which consisted of Ni as γ and Ni3Al as γ′ structure, was used to analyze the diffusion properties of Ni and Al atoms under tensile strain. The strain-induced anisotropic diffusion of Al atoms perpendicular to the interface between the Ni(001) layer and the Ni3Al(001) layer was observed in the MD simulation, suggesting that the strain-induced anisotropic diffusion of Al atoms in γ′ phase is one of the dominant factors of the kinetics of the rafting during creep damage. The effect of alloying elements in the Ni-base superalloy on the strain-induced anisotropic diffusion of Al atoms was also analyzed. Both the atomic radius and the binding energy with Al and Ni of the alloying element are the dominant factors that change the strain-induced diffusion of Al atoms in the Ni-base super-alloy.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In