Full Content is available to subscribers

Subscribe/Learn More  >

Durability Study of Low Velocity Impact Responses of Conventional and Nanophased CFRP Composites Exposed to Seawater

[+] Author Affiliations
Mohammad K. Hossain, Md. Mahmudur R. Chowdhury, Kazi A. Imran, Mahmud B. Salam, Mahesh Hosur, Shaik Jeelani

Tuskegee University, Tuskegee, AL

Paper No. IMECE2013-65671, pp. V009T10A009; 9 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME


The effect of nanoclay on the degradation of low velocity impact responses of carbon fiber reinforced polymer (CFRP) composites manufactured by the vacuum assisted resin transfer molding (VARTM) process is experimentally investigated with and without exposure to seawater for marine applications. Nanoclay was dispersed into the matrix by using magnetic stirring. Samples (100 mm by 100 mm) exposed to seawater for 0, 6, and 12 months in laboratory conditions were impacted at 20, 30, and 40 J energy levels using a Dynatup8210. The damage sustained by the samples was evaluated by a thermographic imaging technique. Comparisons between conventional and nanophased CFRP composites both in conditioned and unconditioned cases were made in terms of peak force, absorbed energy, deflection, delamination area, and specific delamination energy. Water absorption was observed to be reduced due to nanoclay infusion. After 12 months of exposure to seawater 2% nanophased samples absorbed 0.39% moisture whereas control samples absorbed 0.67% moisture. Impact strength, toughness, and energy absorption decreased with increasing conditioning time by weakening the bond between the fiber and matrix and softening the matrix materials. However, reduction in properties is significantly extenuated by the incorporation of nanoclay in the matrix. Specific delamination energy (SDE) is observed to be higher in the nanophased CFRP compared to that of the conventional one at different aging periods indicating an enhanced toughness in the nanophased composites. The larger and stronger interfacial area produced by the nanoclay inclusion has been found to facilitate more energy absorption in the nanophased sample compared to the conventional one. Furthermore, nanoclay reduced the development of delamination by arresting the crack propagation path or by toughening the matrix. It is concluded that the excellent barrier capacity, higher surface area, and high aspect ratio of nanoclay are responsible for the superior performance of CFRP composites, which in turn, enhances the durability of composites.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In