0

Full Content is available to subscribers

Subscribe/Learn More  >

Flow Accelerated Degradation of Corrosion Protective Organic Coatings

[+] Author Affiliations
Qixin Zhou, Yechun Wang

North Dakota State University, Fargo, ND

Paper No. IMECE2013-63727, pp. V009T10A006; 5 pages
doi:10.1115/IMECE2013-63727
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME

abstract

Water percolation into coating-metal interface is usually the main cause for the deterioration of corrosion protective property of organic coatings, which leads to coating delamination and under film corrosion. Recently, flowing fluid has received attention due to its capability to accelerate the degradation of materials. A plethora of works have focused on the corrosion of metallic materials accelerated by the flow of working fluids, while few studies have investigated the flow accelerated degrading behavior of organic coatings. For organic coatings, flowing fluid above the coating surface affects corrosion by enhancing the water percolation and by abrading the surface due to wall shear stress. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings.

In this study, a commercially available epoxy based clear coating and pigmented marine coating were exposed to the laminar flow as well as stationary immersion. The laminar flow was pressure driven and confined in a newly designed flow channel. A 3.5 wt% sodium chloride solution was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The immersing solutions were measured by pH and conductivity meters as well as Fourier Transform Infrared Spectrometer (FTIR) to trace coating degradation products as they leached out from the coating. Initial attempts to acquire acceleration factors and predict service lifetime of organic coatings were also conducted.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In