0

Full Content is available to subscribers

Subscribe/Learn More  >

Verification of Nonlinear Proper Orthogonal Decomposition Reduced Order Modeling for BWR Fuel Assemblies

[+] Author Affiliations
Dennis P. Prill, Andreas G. Class

Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany

Paper No. ICONE21-16434, pp. V004T09A088; 10 pages
doi:10.1115/ICONE21-16434
From:
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 4: Thermal Hydraulics
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5581-2
  • Copyright © 2013 by ASME

abstract

Thermal-hydraulic coupling between power, flow rate and density, intensified by neutronics feedback are the main drivers of boiling water reactor (BWR) stability behavior. Studying potential power oscillations require focusing on BWR operation at high-power low-flow conditions interacting with unfavorable power distribution. Current design rules assure admissible operation conditions by exclusion regions determined by numerical calculations and analytical methods.

Analyzing an exhaustive parameter space of the non-linear BWR system becomes feasible with methodologies based on reduced order models (ROMs) saving computational cost and improving the physical understanding. A general reduction technique is given by the proper orthogonal decomposition (POD).

Model-specific options and aspects of the POD-ROM-methodology are considered. A first verification is illustrated by means of a chemical tubular reactor (TR) setup. Experimental and analytical results for natural convection in a closed circuit (NCC) [1, 2] serve as a second verification example. This setup shows a strongly non-linear character. The implemented model is validated by means of a linear stability map. Transient behavior of the NCC-POD-ROM can not only reproduce the input data but rather predict different states.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In