0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Prediction Technology of Two-Phase Flow Dynamics Under Earthquake Acceleration: 8 — Measurement of Velocity Profile Around Bubble Under Structure Vibration

[+] Author Affiliations
Kousuke Mizuno, Rie Arai, Akiko Kaneko, Hideaki Monji, Yutaka Abe

University of Tsukuba, Tsukuba, Ibaraki, Japan

Hiroyuki Yoshida, Kazuyuki Takase

Japan Atomic Energy Agency, Tokai, Ibaraki, Japan

Paper No. ICONE21-15569, pp. V004T09A043; 10 pages
doi:10.1115/ICONE21-15569
From:
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 4: Thermal Hydraulics
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5581-2
  • Copyright © 2013 by ASME

abstract

In a nuclear power plant, one of the important issues is evaluation of the safety of reactor core and its pipes when an earthquake occurs. Many researchers have conducted studies on constructions of plants. Consequently, there is some knowledge about earthquake-resisting designs. However the influence of an earthquake vibration on thermal fluid inside a nuclear reactor plant is not fully understood. Especially, there are little knowledge how coolant in a core response when large earthquake acceleration is added.

Some studies about the response of fluid to the vibration were carried out. And it is supposed that the void fraction or the power of core is fluctuated with the oscillation by the experiments and numerical analysis. However detailed mechanism about a kinetic response of gas and liquid phases is not enough investigated, therefore the aim of this study is to clarify the influence of vibration of construction on bubbly flow structure. In order to investigate it, we visualize changing of bubbly flow structure in pipeline on which sine wave is applied.

Bubbly flow is produced with injecting gas into liquid flow through a horizontally circular pipe. In order to vibrate the test section, the oscillating table is used. The frequency of vibration added from the table is from 1.0 Hz to 10 Hz and acceleration is from 0.4 G to 1 G (1 G = 9.8 m/s2). The test section and a high speed video camera are fixed on the table. Thus the relative velocity between the camera and the test section is ignored. In the visualization experiment, the PIV measurement is conducted. Then the motion of bubbles, for example the shape, the positions and the velocity are measured with observation.

In addition, by varying added oscillation amplitude, frequency and flow rate of the fluids, the correlation between these parameters and bubble motion was evaluated.

It was clarified that the characteristic bubble deformation and velocity profile around bubble is caused by oscillation in each oscillation phase time. When structure vibration affects the flow, two main mechanisms are supposed. One is the addition of body force of the oscillation acceleration to liquid phase and bubble, and the other is the velocity oscillation of the test section and the effect of the boundary layer of the pipe wall. It was also found that the bubble deformation is correlated with the fluctuation of relative liquid velocity field to bubble and pressure gradient in the flow area.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In