Full Content is available to subscribers

Subscribe/Learn More  >

Cyclic Softening Effect on Design Margin of JLF-1 Steel

[+] Author Affiliations
Huailin Li

State Nuclear Power Research Institute, Beijing, China

Paper No. ICONE21-16545, pp. V001T02A042; 4 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Engineering, Modifications, Life Cycle and Balance of Plant; Nuclear Fuel and Materials; Radiation Protection and Nuclear Technology Applications
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5578-2
  • Copyright © 2013 by ASME


A reduced-activation ferritic/martensitic (RAF/M) steel, JLF-1, is considered as one of the candidate structure material of the fusion reactors and supercritical water-cooled reactor (SCWR). Low cycle fatigue properties of JLF-1 steel at elevated temperature are the design base to provide adequate design margin against postulated mechanism that could experience during its design life, such as stress range, plastic deformation, and cyclic softening etc. However, the reduction in design margin is significant when the cyclic softening happens in cyclic deformation at RT, 673K, 873K. Thus, for the application as the structural materials, it is necessary to evaluate low cycle fatigue behavior and cyclic softening of JLF-1 steel at elevated temperature since those properties of material at elevated temperature are the key issue for design.

Copyright © 2013 by ASME
Topics: Steel , Design



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In