Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Prior-Deformation and Water Chemistry on Stress Corrosion Cracking of Austenitic Alloys in High Temperature Water

[+] Author Affiliations
Zhanpeng Lu, Shuang Xia, Meiyi Yao, Bangxin Zhou

Shanghai University, Shanghai, China

Tetsuo Shoji

Tohoku University, Sendai, Miyagi, Japan

Paper No. ICONE21-16328, pp. V001T02A036; 7 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Engineering, Modifications, Life Cycle and Balance of Plant; Nuclear Fuel and Materials; Radiation Protection and Nuclear Technology Applications
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5578-2
  • Copyright © 2013 by ASME


The interactive effects of prior-deformation and water chemistry on stress corrosion cracking of austenitic alloys in simulated nuclear power plant coolants were quantitatively investigated. Experimental results showed that increasing material yield strength tends to increase stress corrosion cracking growth rates. Increasing electrode potential tends to increase stress corrosion cracking growth rates of austenitic stainless steels. There is a maximum stress corrosion cracking growth rate for Nickel-base alloys and weld metals at electrode potentials near the Ni-NiO equilibrium line. Crack growth rate of prior-deformed austenitic alloys become less dependent on electrode potential than that of their non-deformed counterparts. The modes of prior-deformation and electrode potential affect the stress corrosion cracking path and growth kinetics. The interactive effects between prior deformation and water chemistry on stress corrosion cracking are analyzed.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In