Full Content is available to subscribers

Subscribe/Learn More  >

Hydrogen Absorption Behavior of Titanium Alloys by Cathodic Polarization

[+] Author Affiliations
Yasuhiro Ishijima, Takafumi Motooka, Fumiyoshi Ueno, Masahiro Yamamoto, Gunzo Uchiyama

Japan Atomic Energy Agency, Tokai, Ibaraki, Japan

Jun’ichi Sakai

Waseda University, Tokyo, Japan

Ken’ichi Yokoyama

Kyushu Institute of Technology, Kitakyushu, Fukuoka, Japan

Eiji Tada, Tooru Tsuru

Tokyo Institute of Technology, Tokyo, Japan

Yasuo Nojima, Sachio Fujine

Japan Nuclear Energy Safety Organization, Tokyo, Japan

Paper No. ICONE21-16079, pp. V001T02A034; 5 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Engineering, Modifications, Life Cycle and Balance of Plant; Nuclear Fuel and Materials; Radiation Protection and Nuclear Technology Applications
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5578-2
  • Copyright © 2013 by ASME


Titanium and Ti-5mass%Ta alloy has been utilized in nuclear fuel reprocessing plant material because of its superior corrosion resistance in nitric acid solutions. However, Ti alloy have been known to high susceptibility of hydrogen embrittlement. To evaluate properties of hydrogen absorption and hydrogen embrittlement of Ti alloys, cathodic polarization tests and slow strain rate tests (SSRT) under cathodic polarization were carried out. Results show titanium hydrides covered on the surface of metals and hydrides thickness were within 10μm. But hydride did not observed at inner part of metals. Ti and Ti-5%Ta did not show hydrogen embrittlement by SSRT under cathodic charging. These results suggested that Ti and Ti-5%Ta could absorb hydrogen. But hydrogen did not penetrate inner portion of the metals more than 10μm in depth because titanium hydrides act as barrier of hydrogen diffusion. It is considered that retardation of hydrogen diffusion hindered hydrogen embrittlement of Ti and Ti-5%Ta alloys.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In