Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Bi Addition on the Corrosion Behavior of Zirconium Alloys

[+] Author Affiliations
M. Y. Yao, B. X. Zhou, Q. Li, W. P. Zhang, L. Zhu, L. H. Zou, J. L. Zhang, J. C. Peng

Shanghai University, Shanghai, China

Paper No. ICONE21-15460, pp. V001T02A014; 8 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Engineering, Modifications, Life Cycle and Balance of Plant; Nuclear Fuel and Materials; Radiation Protection and Nuclear Technology Applications
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5578-2
  • Copyright © 2013 by ASME


In order to investigate systematically the effect of Bi addition on the corrosion resistance of zirconium alloys, different zirconium-based alloys, including Zr-4 (Zr-1.5Sn-0.2Fe-0.1Cr), S5 (Zr-0.8Sn-0.35Nb-0.4Fe-0.1Cr), T5 (Zr-0.7Sn-1.0Nb-0.3Fe-0.1Cr) and Zr-1Nb, were adopted to prepare the zirconium alloys containing Bi of 0∼0.5% in mass fraction. These alloys were denoted as Zr-4+xBi, S5+xBi, T5+xBi and Zr-1Nb+xBi, respectively. The corrosion behavior of these specimens was investigated by autoclave testing in lithiated water with 0.01 M LiOH or deionized water at 360°C/18.6 MPa and in superheated steam at 400 °C/10.3 MPa. The micro structure of the alloys was examined by TEM and the second phase particles (SPPs) were analyzed by EDS. Micro structure observation shows that the addition of Bi promotes the precipitation of Sn as second phase particles (SPPs) because Sn is in solid solution in α-Zr matrix in Zr-4, S5 and T5 alloys. The concentration of Bi dissolved in α-Zr matrix increase with the increase of Nb in the alloys, and the excess Bi precipitates as Bi-containing SPPs. The corrosion results show that the effect of Bi addition on the corrosion behavior of different zirconium-based alloys is very complicated, depending on their compositions and corrosion conditions. In the case of higher Bi concentration in α-Zr, the zirconium alloys exhibit better corrosion resistance. However, in the case of precipitation of Bi-containing SPPs, the corrosion resistance gets worse. This indicates that the solid solution of Bi in α-Zr matrix can improve the corrosion resistance, while the precipitation of the Bi-containing SPPs is harmful to the corrosion resistance.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In