Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Advanced PWR Loading Schemes for Transuranic Incineration in Thorium

[+] Author Affiliations
Benjamin A. Lindley, N. Zara Zainuddin, Geoffrey T. Parks

University of Cambridge, Cambridge, UK

Fausto Franceschini

Westinghouse Electric Company LLC, Cranberry Township, PA

Paper No. ICONE21-15328, pp. V001T02A011; 10 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Engineering, Modifications, Life Cycle and Balance of Plant; Nuclear Fuel and Materials; Radiation Protection and Nuclear Technology Applications
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5578-2
  • Copyright © 2013 by ASME


It is difficult to perform multiple recycle of transuranic (TRU) isotopes in PWRs as the moderator temperature coefficient (MTC) tends to become positive after a few recycles and the core may have positive reactivity when fully voided. Due to the favorable impact on the MTC and void coefficient fostered by use of thorium (Th), the possibility of performing Th-TRU multiple-recycle in reduced-moderation PWRs (RMPWRs) is under consideration. The simplest way to reduce the moderation in a PWR is to increase the fuel pin diameter. This configuration improves the trade-off between achievable burn-up and MTC, but is ultimately limited by thermal-hydraulic constraints. Heterogeneous recycle with the bred uranium (U3) and the TRU are arranged in separate pins was found to be neutronically preferable to a homogeneous configuration. Spatial separation also enables the U3 and TRU to be refueled on different batch schemes. These techniques allow satisfactory discharge burn-up while ensuring negative MTC and fully voided reactivity, with the pin diameter of a standard PWR increased from 9.5 mm to 11 mm. Reactivity control is a key challenge due to the reduced worth of neutron absorbers and their detrimental effect on the void coefficients, especially when diluted, as is the case for soluble boron. It seems necessary to control the core using control rods to keep the fully voided reactivity negative. A preliminary analysis indicates that this is feasible.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In