Full Content is available to subscribers

Subscribe/Learn More  >

Design of the Essential Material Test Equipment for the Pebble Bed Effective Thermal Conductivity Measurement Experiment

[+] Author Affiliations
Cheng Ren, Xing-Tuan Yang, Cong-Xin Li, Zhi-Yong Liu, Sheng-Yao Jiang

Tsinghua University, Beijing, China

Paper No. ICONE21-15097, pp. V001T02A004; 7 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Engineering, Modifications, Life Cycle and Balance of Plant; Nuclear Fuel and Materials; Radiation Protection and Nuclear Technology Applications
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5578-2
  • Copyright © 2013 by ASME


High Temperature Gas-cooled Reactor (HTGR) is a typical representation of Generation IV nuclear power system for its advantages like inherent safety, high efficiency, widely application as high-temperature heat source. The first two 250-MWt high temperature reactor pebble bed modules (HTR-PM) have be installing at the Shidaowan plant in Shandong Province, China, which have the cylindrical core structure with thousands of spherical fuel elements randomly packed inside. The values of the effective thermal conductivity of the pebble bed core under different temperatures are essential parameters for the design of HTGR, which are needed to analyze the maximum fuel temperature, temperature distribution and residual heat releasing ability in reactor core. For this purpose, Tsinghua University in China has proposed a full-scale heat transfer experiment to conduct comprehensive thermal transfer tests in packed pebble bed and to determine the effective thermal conductivity through the pebble bed under vacuum condition and helium environment with temperature up to 1600°C.

An essential material test equipment is built in advance to provide reliable materials and technical support for the design of the final experimental device aimed at measuring the effective thermal conductivity of pebble bed type reactor core of the high temperature gas-cooled reactor. The design of the essential material test equipment is introduced in detail, including the heat element, the insulation structure, the temperature detector, cooling water system, vacuum system, hydraulic lifting system, data acquisition system and so on. Several key technologies in design are described in detail. Test temperature in the equipment was elevated up to 1600°C, which covers the whole temperature range of the normal operation and accident condition of HTGR and could fully meet the test requirements of materials used in the reactor. The construction and commissioning of the test equipment shows that the test equipment has met the design requirements and verified the feasibility of the related materials and structures.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In