Full Content is available to subscribers

Subscribe/Learn More  >

Modeling the Irradiation Swelling of UO2 at the Fuel Pellet Rim

[+] Author Affiliations
Lijun Gao, Shengyao Jiang, Jiyang Yu

Tsinghua University, Beijing, China

Bingde Chen

Nuclear Power Institute of China, Chengdu, Sichuan, China

Zhong Xiao

National Energy R&D Center on Advanced Nuclear Fuel, Chengdu, Sichuan, China

Paper No. ICONE21-15009, pp. V001T02A001; 7 pages
  • 2013 21st International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Engineering, Modifications, Life Cycle and Balance of Plant; Nuclear Fuel and Materials; Radiation Protection and Nuclear Technology Applications
  • Chengdu, China, July 29–August 2, 2013
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5578-2
  • Copyright © 2013 by ASME


Irradiation swelling of UO2 at the fuel pellet rim was modeled based on the published theory and data of HBS (High Burnup Structure) formation. Fuel swelling was divided into two parts: fuel matrix swelling and porosity growth. Both solid fission products and fission gas contribute to the fuel matrix swelling prior to HBS transformation, resulting in relatively stable matrix swelling rate of around 1.0% per 10 GWd/tU, but the transformation accompanied by Xe depletion reduces the matrix swelling rate to approximately 0.3% per 10 GWd/tU, only attributed to solid fission products. Considering the direct impact of Xe depletion on the drop of matrix swelling rate, the exponential law of Xe depletion was applied to model the reduction of matrix swelling rate. Pore size and pore density evolution are the two main aspects of porosity growth. Pore size takes the form of lognormal distribution, whose parameters are obtained through fitting the experimental data. Pore density increases in the transformation process but goes down as a result of pore coarsening thereafter. Published data of three pellets were used to verify the correlations modeling pore growth, which were proven generally consistent with each other. The results of this work are ready to be incorporated into fuel performance modeling code as an option for detailed calculation of fuel swelling.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In