0

Full Content is available to subscribers

Subscribe/Learn More  >

A van der Pol Based Reduced-Order Model for Non-Synchronous Vibration (NSV) in Turbomachinery

[+] Author Affiliations
Stephen T. Clark, Robert E. Kielb, Kenneth C. Hall

Duke University, Durham, NC

Paper No. GT2013-95741, pp. V07BT33A012; 9 pages
doi:10.1115/GT2013-95741
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5527-0
  • Copyright © 2013 by ASME

abstract

This paper demonstrates the potential of using a multi-degree-of-freedom, traditional van der Pol oscillator to model non-synchronous vibration (NSV) in turbomachinery. It is shown that the two main characteristics of NSV are captured by the reduced-order, van der Pol model. First, a stable limit cycle oscillation (LCO) is maintained for various conditions. Second, the lock-in phenomenon typical of NSV is captured for various fluid-structure frequency ratios. This research identifies values and significance of the coupling parameters used in the van der Pol model. These coefficients are chosen to model confirmed instances of experimental NSV, and to develop a preliminary design tool that engineers can use to better design turbomachinery for NSV. Specifically, coefficient tuning from experimental instances of NSV are considered to identify the unknown coupling coefficients in the van der Pol model.

The goal of future research will be to identify values and significance of the coupling parameters used in the van der Pol model, to match these coefficients with confirmed instances of experimental NSV, and to develop a preliminary design tool that engineers can use to better design turbomachinery for NSV. Proper orthogonal decomposition (POD) CFD techniques and coefficient tuning from experimental instances of NSV have been considered to identify the unknown coupling coefficients in the van der Pol model. The finalization of this preliminary-design research will be completed in future research.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In