Full Content is available to subscribers

Subscribe/Learn More  >

Flutter Amplitude Saturation by Nonlinear Friction Forces: An Asymptotic Approach

[+] Author Affiliations
C. Martel

Universidad Politécnica de Madrid, Madrid, Spain

R. Corral

Industria de Turbopropulsores, Madrid, Spain

Paper No. GT2013-94068, pp. V07BT33A001; 9 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5527-0
  • Copyright © 2013 by ASME


The computation of the friction saturated vibratory response of an aerodynamically unstable bladed-disk in a realistic configuration is a formidable numerical task, even for the simplified case of assuming the aerodynamic forces to be linear. The non-linear friction forces effectively couple different traveling waves modes and, in order to properly capture the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is not that complex: it typically consists of a superposition of the aeroelastic unstable traveling waves, which oscillate at the elastic modal frequency and exhibit also a modulation in a much longer time scale. This large time modulation over the purely elastic oscillation is due to both, the small aerodynamic effects and the small nonlinear friction forces. The correct computation of these two small effects (small as compared with the elastic forces) is crucial to determine the final amplitude of the flutter vibration, which basically results from its balance. In this work we apply asymptotic techniques to obtain a new simplified model that gives only the slow time dynamics of the amplitudes of the traveling waves, filtering out the fast elastic oscillation. The resulting asymptotic model is very reduced and extremely cheap to simulate, and it has the advantage that it gives precise information about how the nonlinear friction at the fir-tree actually acts in the process of saturation of the vibration amplitude.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In