Full Content is available to subscribers

Subscribe/Learn More  >

Finite-Element Modelling of an Experimental Mistuned Bladed Disk and Experimental Validation

[+] Author Affiliations
Jean de Cazenove, Scott Cogan

Université de Franche-Comté, Besançon, France

Moustapha Mbaye

Turbomeca, Bordes, France

Paper No. GT2013-95985, pp. V07BT31A016; 10 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5527-0
  • Copyright © 2013 by ASME


Integrally bladed rotors dynamic properties are known to be particularly sensitive to small geometric discrepancies due to the machining process or in-service wear. In this context, it is straightforward that setting up accurate numerical models which take into account real mistuning patterns is a key issue in the prediction of forced response amplitudes under operating conditions. The present study focuses on an experimental bladed disk. Due to strong inter-blade coupling, the geometric mistuning is supposed to result in severe mode localization for the studied bladed disk, thus emphasizing the need of a realistic, predictive finite-element model. This paper describes the procedure which leads to the development and validation of a high-fidelity FE model for a realistic bladed disk, based on coordinate measurements by means of fringe projection. After giving an overview of the coordinate measurement and model building for the studied bladed disk, the comparison of cantilevered-blade and full disk calculated eigenfrequencies to individual blade and full disk in quasi-vacuum measurements are presented.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In