Full Content is available to subscribers

Subscribe/Learn More  >

Modified Modal Domain Analysis of a Bladed Rotor Using Coordinate Measurement Machine Data on Geometric Mistuning

[+] Author Affiliations
Vinod Vishwakarma, Alok Sinha, Yasharth Bhartiya

The Pennsylvania State University, University Park, PA

Jeffery M. Brown

Air Force Research Laboratory, Wright-Patterson AFB, OH

Paper No. GT2013-94393, pp. V07BT31A006; 9 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5527-0
  • Copyright © 2013 by ASME


Modified Modal Domain Analysis (MMDA), a reduced order modeling technique, is applied to a geometrically mistuned integrally bladed rotor to obtain its natural frequencies, mode shapes and forced response. The geometric mistuning of blades is described in terms of proper orthogonal decomposition (POD) of the coordinate measurement machine (CMM) data. Results from MMDA are compared to those from the full (360 degrees) rotor ANSYS model. It is found that the MMDA can accurately predict natural frequencies, mode shapes, and forced response. The effects of the number of POD features and the number of tuned modes used as bases for model reduction are examined. Results from frequency mistuning approaches, fundamental mistuning model (FMM) and subset of nominal modes (SNM), are also generated and compared to those from full (360 degree) rotor ANSYS model. It is clearly seen that FMM and SNM are unable to yield accurate results whereas MMDA yields highly accurate results.

Copyright © 2013 by ASME
Topics: Machinery , Rotors



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In