0

Full Content is available to subscribers

Subscribe/Learn More  >

Geometric Mistuning Reduced Order Models for Integrally Bladed Rotors With Mistuned Disk-Blade Boundaries

[+] Author Affiliations
Joseph A. Beck, Jeffrey M. Brown, Charles J. Cross

Air Force Research Laboratory, Wright-Patterson Air Force Base, OH

Joseph C. Slater

Wright State University, Dayton, OH

Paper No. GT2013-94361, pp. V07BT31A005; 12 pages
doi:10.1115/GT2013-94361
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5527-0
  • Copyright © 2013 by ASME

abstract

New geometric mistuning approaches for integrally bladed rotors (IBRs) are developed for incorporating geometric perturbations to a fundamental disk-blade sector, particularly the disk-blade boundary, or connection. The developed Reduced Oder Models (ROMs) are formulated from a Craig-Bampton component mode synthesis (C-B CMS) framework that is further reduced by a truncated set of interface modes that are obtained from an eigen-analysis of the C-B CMS constraint degrees of freedom (DOFs). An investigation into using a set of tuned interface modes and tuned constraint modes for model reduction is then performed. A tuned mode approximation has the added benefit of being only calculated once which offers significant computational savings for subsequent analyses. Two configurations of disk-blade connection mistuning are investigated: as-measured principal component deviations and random perturbations to the inter-blade spacing. Furthermore, the perturbation sizes are amplified to investigate the significance of incorporating mistuned disk-blade connection. Free and forced response results are obtained for each ROM and each disk-blade connection type and compared to full finite element model (FEM) solutions. It is shown that the developed methods provide highly accurate results with a significant reduction in solution time compared to the full FEM. In addition, results indicate that the inclusion of a mistuned disk-blade connection becomes significant as the size of the geometric deviations at the connection become large.

Copyright © 2013 by ASME
Topics: Rotors , Disks , Blades

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In