0

Full Content is available to subscribers

Subscribe/Learn More  >

Hydrodynamic Analysis of Hydrostatic Bearings With Runner Misalignment and Pad Damage

[+] Author Affiliations
Timothy Dimond, David Barnes

University of Virginia, Charlottesville, VA

Paper No. GT2013-95951, pp. V07BT30A028; 10 pages
doi:10.1115/GT2013-95951
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5527-0
  • Copyright © 2013 by ASME

abstract

Hydrostatic bearings are used in applications where surface speeds are low, or viscosities are insufficient to develop significant load capacity due to shear flow. They are also used in jacking applications for initial liftoff of rotors under low or no rotation conditions, especially for heavy rotors where significant babbitt damage would otherwise occur. Traditional hydrostatic bearing analyses assume isothermal lubricating flows. Analytical solutions also assume that the pressure in the pocket of the hydrostatic bearing is constant. This assumption is only approximately correct for low and zero operating speeds. Analytical solutions also assume that the runner and pad surfaces are parallel. The analytical solutions are not capable of capturing damage or misalignment effects. This paper describes a hydrodynamic analysis of a hydrostatic thrust bearing. The solution is based on a finite element solution to the generalized Reynolds equation. The finite element solution is applied in both the pocket and pad regions of the hydrostatic bearings. The analysis includes a flow loop balance that considers the effects of pressure losses in the lubricant supply piping, allowing for modeling of saturation effects in bearing load capacity. The flow loop balance for the lubrication supply is coupled with the bearing solution. This allows for pad loads to vary as a function of circumferential position in thrust bearings. The analysis was applied to the operation of a hydrostatic thrust bearing system for the HUSIR radio telescope at the Massachusetts Institute of Technology. Simplified models of pad damage and runner misalignment were considered in the analysis. The minimum film thickness and pressure profile was calculated. Runner misalignment reduced minimum film thickness by up to 80% when compared to a parallel runner under identical loading conditions. Runner damage equivalent to twice the nominal film thickness reduced the minimum film thickness by approximately 10%.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In