Full Content is available to subscribers

Subscribe/Learn More  >

A New Approach for the Stability Analysis of Rotors Supported by Gas Bearings

[+] Author Affiliations
Mohamed Amine Hassini, Mihai Arghir

Université de Poitiers, Poitiers, France

Paper No. GT2013-94802, pp. V07BT30A017; 13 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5527-0
  • Copyright © 2013 by ASME


A simplified nonlinear transient analysis method for gas bearings was recently published by the authors [1]. The method uses the fact that linearized dynamic characteristics of gas bearings, namely the impedances, can be approximated by rational transfer functions. The method gave good results if the rational transfer function approach approximated well the linearized dynamic characteristics. Indeed, each of the four complex impedances Zαβ, α, β = {x, y} had one or two poles depending on the order of the rational function that were used. These poles appear as supplementary eigenvalues of the extended matrix of the homogeneous system of first order differential equations describing the model of the rotor. They govern the stability of the dynamic model in the same way as the original eigenvalues do and therefore they impose non-negligible constraints on the rational function approximation of the impedances of gas bearings. The present improvement of the method overrides this problem. The basic idea is to impose the same set of poles for Zxx, Zxy, Zyx and Zyy. By imposing this constraint, the poles are stable and the introduction of artificial instability or erratic eigenvalues is avoided. Campbell and stability diagrams naturally taking into account the variation of the dynamic coefficients with the excitation frequency can now be easily plotted. For example, the method is used for analyzing the stability of rigid and flexible rotors supported by two identical gas bearings modeled with second order rational transfer functions. The method can be applied to any bearing or seal whose impedance is approximated by rational transfer functions.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In