0

Full Content is available to subscribers

Subscribe/Learn More  >

An Improved Catcher Bearing Model and an Explanation of the Forward Whirl/Whip Phenomenon Observed in Active Magnetic Bearing Transient Drop Experiments

[+] Author Affiliations
Jason Wilkes, Jeff Moore, David Ransom

Southwest Research Institute, San Antonio, TX

Giuseppe Vannini

GE Oil&Gas, Florence, Italy

Paper No. GT2013-94594, pp. V07BT30A015; 11 pages
doi:10.1115/GT2013-94594
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5527-0
  • Copyright © 2013 by ASME

abstract

Though many approaches have been proposed in the literature to model the reaction forces in a catcher bearing (CB), there are still phenomena observed in experimental tests that cannot be explained by existing models. The following paper presents a novel approach to model a CB system. Some of the elements in the model have been previously introduced in the literature; however, there are other elements in the proposed model that are new, providing an explanation for the forward whirling phenomena that has been observed repeatedly in the literature. The proposed CB model is implemented in a finite element rotordynamic package, and nonlinear time-transient simulations are performed to predict published experimental results of a high speed vertical sub-scale compressor; with no other forces present in the model, the agreement between simulations and experimental data is favorable.

The results presented herein show that friction between the journal and axial face of the catcher bearing results in a forward cross-coupled force that pushes the rotor in the direction of rotation. This force is proportional to the coefficient of friction between the axial face of the rotor and catcher bearing and the axial thrust on the rotor. This force results in synchronous whirl when the running speed is below a combined natural frequency of the rotor-stator system, and constant frequency whip when the speed is above a whip frequency.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In