0

Full Content is available to subscribers

Subscribe/Learn More  >

Efficient Techniques for the Computation of the Nonlinear Dynamics of a Foil-Air Bearing Rotor System

[+] Author Affiliations
Hai Pham, Philip Bonello

The University of Manchester, Manchester, UK

Paper No. GT2013-94389, pp. V07BT30A011; 9 pages
doi:10.1115/GT2013-94389
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5527-0
  • Copyright © 2013 by ASME

abstract

The foil-air bearing (FAB) plays a key role in the development of high speed, economical and environmentally friendly oil-free turbomachinery. However, FABs are known to be capable of introducing undesirable nonlinear effects into the dynamic response of a rotor-bearing system. This necessitates a means for calculating the nonlinear response of rotor systems with FABs. Up to now, the computational burden introduced by the interaction of the dynamics of the rotor, air film and foil structure has been overcome by uncoupling these three subsystems, introducing the potential for significant error. This paper performs the time domain solution of a simple rotordynamic system without uncoupling the state variables. This solution is then used as a reference for the verification of two proposed novel methods for reducing the computational burden: (a) use of harmonic balance; (b) use of Galerkin transformation. The applicability and accuracy of these two methods is illustrated on a simple symmetric rotor-FAB system.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In