Full Content is available to subscribers

Subscribe/Learn More  >

Blade Tip Shape Optimization for Enhanced Turbine Aerothermal Performance

[+] Author Affiliations
C. De Maesschalck, S. Lavagnoli, G. Paniagua

von Karman Institute for Fluid Dynamics, Rhode Saint Genèse, Belgium

Paper No. GT2013-94754, pp. V03CT14A011; 12 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3C: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5516-4
  • Copyright © 2013 by ASME


In high-speed unshrouded turbines tip leakage flows generate large aerodynamic losses and intense unsteady thermal loads over the rotor blade tip and casing. The stage loading and rotational speeds are steadily increased to achieve higher turbine efficiency, and hence the overtip leakage flow may exceed the transonic regime. However, conventional blade tip geometries are not designed to cope with supersonic tip flow velocities. A great potential lays in the modification and optimization of the blade tip shape as a means to control the tip leakage flow aerodynamics, limit the entropy production in the overtip gap, manage the heat load distribution over the blade tip and improve the turbine efficiency at high stage loading coefficients.

The present paper develops an optimization strategy to produce a set of blade tip profiles with enhanced aerothermal performance for a number of tip gap flow conditions. The tip clearance flow was numerically simulated through two-dimensional compressible Reynolds-Averaged Navier-Stokes (RANS) calculations that reproduce an idealized overtip flow along streamlines. A multi-objective optimization tool, based on differential evolution combined with surrogate models (artificial neural networks), was used to obtain optimized 2D tip profiles with reduced aerodynamic losses and minimum heat transfer variations and mean levels over the blade tip and casing. Optimized tip shapes were obtained for relevant tip gap flow conditions in terms of blade thickness to tip gap height ratios (between 5 and 25), and blade pressure loads (from subsonic to supersonic tip leakage flow regimes) imposing fixed inlet conditions. We demonstrated that tip geometries which perform superior in subsonic conditions are not optimal for supersonic tip gap flows. Prime tip profiles exist depending on the tip flow conditions. The numerical study yielded a deeper insight on the physics of tip leakage flows of unshrouded rotors with arbitrary tip shapes, providing the necessary knowledge to guide the design and optimization strategy of a full blade tip surface in a real 3D turbine environment.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In