0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Delft-Jet-in-Hot-Coflow (DJHC) Burner Using Probability Density Function (PDF) Transport Modeling

[+] Author Affiliations
Ashoke De, Akshay Dongre

Indian Institute of Technology Kanpur, Kanpur, India

Rakesh Yadav

Ansys Fluent India Pvt. Ltd., Pune, India

Paper No. GT2013-95390, pp. V01BT04A030; 10 pages
doi:10.1115/GT2013-95390
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 1B: Combustion, Fuels and Emissions
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5511-9
  • Copyright © 2013 by ASME

abstract

In the present paper, the flames from DJHC burner, imitating MILD (Moderate and Intense Low Oxygen Dilution) combustion, are simulated using PDF transport modeling. Two different solution approaches have been used to resolve the joint composition PDF. First, a Lagrangian approach is used to solve the joint composition PDF, while in the second approach, the approximate solution is achieved by using presumed shape PDF and DQMOM-IEM modeling known as Multi-Environment Eulerian PDF (MEPDF). A quantitative comparison of the predictions from these two solution methods has been performed for two different jet Reynolds number, i.e. Re = 4100 & 8800. Moreover, the effect of molecular diffusion is also explored by comparing the predictions using different micro-mixing models such as Coalescence Dispersion (CD), Euclidean Minimum Spanning Tree (EMST), and Interaction-by-Exchange-with-Mean (IEM) model. The obtained numerical predictions from both approaches are compared with the experimental data to highlight the accuracy as well as the predictive capability of these models. In the case of low Reynolds number (Re = 4100), it is observed that the mean axial velocity and turbulent kinetic energy profiles are in good agreement with the measurements while the temperature profiles are slightly over-predicted in the downstream region. Although MEPDF results are in good agreement with the LPDF results, both the model predictions tend to exhibit discrepancies at higher Reynolds number.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In