0

Full Content is available to subscribers

Subscribe/Learn More  >

The Influence of Dump Gap on Aerodynamic Performance of a Low-Emission Combustor Dump Diffuser

[+] Author Affiliations
Pei He, Kaicheng Xie, Sutao Chen, Shanping Shen, Qinglin Zeng

AVIC Commercial Aircraft Engine Co., Ltd., Shanghai, China

Jianqin Suo

Northwestern Polytechnical University, Xi’an, Shaanxi, China

Paper No. GT2013-95230, pp. V01BT04A017; 7 pages
doi:10.1115/GT2013-95230
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 1B: Combustion, Fuels and Emissions
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5511-9
  • Copyright © 2013 by ASME

abstract

In modern civil aero-engine gas turbine combustors, lean burn technology is widely adopted to achieve low NOx emission target. As such, most of the flow issued from the compressor is expected to flow into the combustor dome, compared with a typical value of 30% in conventional combustors. To accommodate this increased mass flow rate, lean module fuel injectors should be significantly larger than their conventional counterparts. This will change the combustor external aerodynamic layout such as a deeper flame tube together with an enlarged dump gap, which is the distance between the pre-diffuser outlet and the flame tube. The modification will potentially increase the total pressure loss due to enlarged turning within the dump region. Thus it is important to investigate the influence of the dump gap on the aerodynamic performance of the diffuser. Experiments have been carried out and presented in this paper. The tested geometry comprises a pre-diffuser, followed by a sudden expansion through which the main flow is divided into three passages, i.e., the combustor dome, the outer passage, and the inner passage. Up to 60% of the airflow issued from the pre-diffuser flows into the dome. It is found that the loss coefficient of pre-diffuser decreases as dump gap increases. The overall loss coefficient is relatively high when the dump gap ratio is smaller than 1.2 or larger than 2.8, and is relatively low and insensitive to dump gap with intermediate dump gaps. It is also found that the proportion of the pre-diffuser loss to the overall loss is larger than conventional dump diffuser.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In