Full Content is available to subscribers

Subscribe/Learn More  >

Thermoacoustic Analysis of a Full Annular Lean Burn Aero-Engine Combustor

[+] Author Affiliations
Antonio Andreini, Bruno Facchini, Andrea Giusti

University of Florence, Firenze, Italy

Ignazio Vitale, Fabio Turrini

AVIO S.p.A., Rivalta di Torino, TO, Italy

Paper No. GT2013-94877, pp. V01AT04A069; 13 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 1A: Combustion, Fuels and Emissions
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5510-2
  • Copyright © 2013 by ASME


In order to reduce NOx emissions, modern gas turbines are often equipped with lean burn combustion systems, where the engine operates near the lean blow-out limits. One of the most critical issues of lean combustion technology is the onset of combustion instabilities related to a coupling between pressure oscillations and thermal fluctuations excited by the unsteady heat release. In this work a thermoacoustic analysis of a full annular combustor developed by AVIO is discussed. The system is equipped with an advanced PERM (Partially Evaporating and Rapid Mixing) injection system based on a piloted lean burn spray flame generated by a pre-filming atomizer. Combustor walls are based on multi-perforated liners to control metal temperature: these devices are also recognized as very effective sound absorbers, thus in innovative lean combustors they could represent a good means both for wall cooling and damping combustion instabilities. The performed analysis is based on the resolution of the eigenvalue problem related to an inhomogeneous wave equation which includes a source term representing heat release fluctuations (the so called Flame Transfer Function, FTF) in the flame region using a three-dimensional FEM code. A model representing the entire combustor was assembled including all the acoustically relevant geometrical features. In particular, the acoustic effect of multi-perforated liners was introduced by modeling the corresponding surfaces with an equivalent internal impedance. Different simulations with and without the presence of the flame were performed analyzing the influence of the multi-perforated liners. Furthermore, different modeling approaches for the FTF were examined and compared with each other. Comparisons with available experimental data showed a good agreement in terms of resonant frequencies in the case of passive simulations. On the other hand, when the presence of the flame is considered, comparisons with experiments showed the inadequacy of FTFs commonly used for premixed combustion and thus the necessity of an improved FTF, more suitable for liquid fueled gas turbines where the evaporation process could play an important role in the flame heat release fluctuations.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In