Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Fuel Composition, Engine Power and Operation Mode on Exhaust Gas Particulate Size Distribution and Gaseous Emissions From a Gas Turbine Engine

[+] Author Affiliations
Hu Li, Mohamed A. Altaher

Leeds University, Leeds, UK

Chris Wilson, Simon Blakey

Sheffield University, Sheffield, UK

Winson Chung

Tata Steel Strip Products UK, Port Talbot, UK

Paper No. GT2013-94854, pp. V01AT04A065; 13 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 1A: Combustion, Fuels and Emissions
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5510-2
  • Copyright © 2013 by ASME


The impact of fuel composition, engine power (idle and full power) and operation mode (cold and hot idle) on the gaseous emissions, particle number and mass concentrations and size distributions from an aircraft auxiliary power unit (APU) was investigated. A re-commissioned Artouste MK113 APU engine was used. The engine was run at three operational modes: i.e. approximately 6 minutes at idle (cold idle) after stabilized from start, 6 minutes at full power and then returning to idle again (hot idle) for 6 minutes. All operating parameters of the engine were monitored and recorded. The engine exhaust particle measurements and gaseous emissions were taken at three operating modes.

Five alternative fuels/blending components were tested and compared to neat conventional JetA1 fuel either in pure or blended forms. These fuels varied in their compositions in terms of H/C ratio, density and other properties. A Scanning Mobility Particle Sizer (SMPS) with a Nano-Differential Mobility Analyzer (NDMA) was used to determine the number and mass concentration and size distribution of engine exhaust in the size range from 5 nm to 160 nm. The influence of fuel elemental ratio (H/C), engine power and cold/hot operation on particle number and mass size distribution was investigated. The results show that there was a good correlation between fuels H/C ratio and particle concentrations, particle size and distributions characteristics. The engine at hot idle produced ∼20% less particles compare to the results at cold idle. The alternative fuel blends produced less particles than JetA1 fuel. The testing fuels produced similar levels of NOx, slight reductions in CO and remarkable reductions in UHC compared to JetA1.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In