Full Content is available to subscribers

Subscribe/Learn More  >

A Four Component Skeletal Model for the Analysis of Jet Fuel Surrogate Combustion

[+] Author Affiliations
Ben Akih-Kumgeh

Syracuse University, Syracuse, NY

Jeffrey M. Bergthorson

McGill University, Montreal, QC, Canada

Paper No. GT2013-94813, pp. V01AT04A060; 9 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 1A: Combustion, Fuels and Emissions
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5510-2
  • Copyright © 2013 by ASME


A skeletal chemical kinetic model for jet fuel combustion, comprising four representative fuel components, is presented. The sub model for the three components, toluene, methyl cyclohexane (MCH) and n-dodecane, is deduced from a detailed model for jet fuel surrogate proposed by Wang et al. [Wang et al., 2010]. The reduction is based on a species sensitivity approach, herein referred to as Alternate Species Elimination (ASE). The sub model for the fourth component, iso-octane, is established through semi-detailed kinetic modeling, considering existing reactions and species of the smaller hydrocarbon systems as well as species and reactions pertinent to the n-dodecane system.

The performance of the resulting model is assessed by comparing predictions of ignition delay times and laminar burning velocities with those of the detailed model. It is shown that the skeletal model retains the predictive ability of the detailed model with respect to the three components, n-dodecane, MCH and toluene. The complementary iso-octane sub model is also found to reasonably predict high-temperature ignition delay times and laminar burning velocities.

The four component skeletal model is tested against shock tube ignition data and laminar burning velocities of jet fuel surrogates. It is observed that high-temperature ignition is fairly well predicted while low-temperature ignition delay times are longer than experimentally observed. While the predictions of laminar burning velocities of atmospheric flames of jet fuels at 400 K are reasonable, slower flames are predicted at higher temperatures. The proposed skeletal model has 192 species and 1291 reactions, compared to the detailed multi-component model, with 348 species and 2163 elementary reactions, albeit without iso-octane. This results in improvement in the associated computational costs for combustion analysis. Further development of the skeletal model is needed to improve its prediction ability over a wider range of combustion properties and thermodynamic conditions.

Copyright © 2013 by ASME
Topics: Combustion , Jet fuels



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In