Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Nanosecond Repetitively Pulsed Discharges on the Dynamics of a Swirl-Stabilized Lean Premixed Flame

[+] Author Affiliations
D. A. Lacoste, D. Durox, C. O. Laux, T. Schuller

Ecole Centrale Paris, Châtenay-Malabry, France

J. P. Moeck

Technische Universität Berlin, Berlin, Germany

Paper No. GT2013-94769, pp. V01AT04A054; 9 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 1A: Combustion, Fuels and Emissions
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5510-2
  • Copyright © 2013 by ASME


The effects of Nanosecond Repetitively Pulsed (NRP) plasma discharges on the dynamics of a swirl-stabilized lean premixed flame are investigated experimentally. Voltage pulses of 8-kV amplitude and 10-ns duration are applied at a repetition rate of 30 kHz. The average electric power deposited by the plasma is limited to 40 W, corresponding to less than 1 % of the thermal power of 4 kW released by the flame. The investigation is carried out with a dedicated experimental setup that allows for studies of the flame dynamics with applied plasma discharges. A loudspeaker is used to perturb the flame acoustically, and the discharges are generated between a central pin electrode and the rim of the injection tube. Velocity and CH* chemiluminescence signals are used to determine the flame transfer function assuming that plasma discharges do not affect the correlation between CH* emission and heat release rate fluctuations. Phase-locked images of the CH* emission were recorded to assess the effect of the plasma on the oscillation of the flame. The results show a strong influence of the NRP discharges on the flame response to acoustic perturbations, thus opening interesting perspectives for combustion control. An interpretation of the modifications observed in the transfer function of the flame is proposed by taking into account the thermal and chemical effects of the discharges. It is then demonstrated that by applying NRP discharges at unstable conditions, the oscillation amplitudes can be reduced by an order of magnitude, thus effectively stabilizing the system.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In