0

Full Content is available to subscribers

Subscribe/Learn More  >

Flame Speed and Vapor Pressure of Biojet Fuel Blends

[+] Author Affiliations
Jeffrey D. Munzar, Bradley M. Denman, Rodrigo Jiménez, Ahmed Zia, Jeffrey M. Bergthorson

McGill University, Montreal, QC, Canada

Paper No. GT2013-94650, pp. V01AT04A044; 13 pages
doi:10.1115/GT2013-94650
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 1A: Combustion, Fuels and Emissions
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5510-2
  • Copyright © 2013 by ASME

abstract

An understanding of the fundamental combustion properties of alternative fuels is essential for their adoption as replacements for non-renewable sources. In this study, three different biojet fuel mixtures are directly compared to conventional Jet A-1 on the basis of laminar flame speed and vapor pressure. The biofuel is derived from camelina oil and hydrotreated to ensure consistent elemental composition with conventional aviation fuel, yielding a bioderived synthetic paraffinic kerosene (Bio-SPK). Two considered blends are biofuel and Jet A-1 mixtures, while the third is a 90% Bio-SPK mixture with 10% aromatic additives. Premixed flame speed measurements are conducted at an unburned temperature of 400K and atmospheric pressure using a jet-wall stagnation flame apparatus. Since the laminar flame speed cannot be studied experimentally, a strained (or reference) flame speed is used as the basis for the initial comparison. Only by using an appropriate surrogate fuel were the reference flame speed measurements extrapolated to zero flame strain, accomplished using a direct comparison of simulations to experiments. This method has been previously shown to yield results consistent with non-linear extrapolations. Vapor pressure measurements of the biojet blends are also made from 25 to 200°C using an isoteniscope. Finally, the biojet blends are compared to the Jet A-1 benchmark on the basis of laminar flame speed at different equivalence ratios, as well as on the basis of vapor pressure over a wide temperature range, and the suitability of a binary laminar flame speed surrogate for these biojet fuels is discussed.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In