Full Content is available to subscribers

Subscribe/Learn More  >

Modelling of a Turbulent Jet in a Gas Crossflow

[+] Author Affiliations
Dominic L. Moffat, Alexey A. Burluka

University of Leeds, Leeds, West Yorkshire, UK

Paper No. GT2013-94309, pp. V01AT04A017; 17 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 1A: Combustion, Fuels and Emissions
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5510-2
  • Copyright © 2013 by ASME


The first part of this work presents a comparison of predictions obtained with several two-equation type RANS turbulence models commonly used in industry against experimental data obtained by Whitelaw et al [1]. All examined models yield a relatively poor match in the flow region very close to the wall; agreement with the measurements improves significantly when moving further away from the wall. This concerns both the internal normal stress profiles and the average velocity profiles, the latter show improved prediction of the recirculation zone area when moving further into the main stream. Downstream behaviour for both models shows an excellent match more than 6 diameters away from the jet inlet, defined as the region after which the flow essentially resumes its normal duct behaviour[1].

Expanding upon these RANS results, another series of simulations using LES modelling with the standard Smagorinsky SGS model was conducted using the same grid and compared to the RANS-based results. Although performance in the most complex flow areas was slightly improved over RANS, this was at the cost of an increase of computation time by almost a factor of 6.

The next stage involved developing a code based on the model for two-phase flow described in [2] to predict the atomisation pattern for a non-vaporising (or “cold”) flow based on the parameters of the previous simulations. This model implements transport equations for the liquid mass fraction and the average surface area per unit mass along with an equation for average density; resulting in an entirely Eulerian model which can be used to predict atomisation from first principles. Current work consists in development of additional source terms describing vaporisation in a strongly turbulent environment and further coupling with a combustion model applicable to the combustion chamber of an industrial gas turbine.

Copyright © 2013 by ASME
Topics: Turbulence , Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In