Full Content is available to subscribers

Subscribe/Learn More  >

Modelling Chemical Processes in Cement Based Materials by Means of Multiphase Porous Media Mechanics

[+] Author Affiliations
Francesco Pesavento, Bernhard A. Schrefler

University of Padova, Padova, Italy

Dariusz Gawin, Marcin Koniorczyk

Technical University of Lodz, Lodz, Poland

Paper No. ESDA2012-82932, pp. 81-88; 8 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Computational Mechanics; Advanced Simulation-Based Engineering Sciences; Virtual and Augmented Reality; Applied Solid Mechanics and Material Processing; Dynamical Systems and Control
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4484-7
  • Copyright © 2012 by ASME


A general approach to modelling chemical degradation processes in cement based materials, due to combined action of hygro-thermal, chemical and mechanical loads, is presented. Mechanics of multiphase porous media and damage mechanics are applied for this purpose. The mass-, energy- and momentum balance equations, and constitutive and physical relations are briefly presented, and then numerically solved with the finite element method. Several examples of the model application for analysing ions transport and degradation processes of concrete due to chemical attack of pure water, salt crystallisation and alkali-silica reaction are presented and discussed.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In