Full Content is available to subscribers

Subscribe/Learn More  >

Non-Associative Finite Strain Plasticity Coupled With Anisotropic Ductile Damage for Metal Forming

[+] Author Affiliations
T. Dung Nguyen, Houssem Badreddine, Khémais Saanouni

Université de Technologie de Troyes, Troyes, France

Paper No. ESDA2012-82797, pp. 529-534; 6 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Computational Mechanics; Advanced Simulation-Based Engineering Sciences; Virtual and Augmented Reality; Applied Solid Mechanics and Material Processing; Dynamical Systems and Control
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4484-7
  • Copyright © 2012 by ASME


This paper presents the formulation of an advanced mechanical model describing a wide class of anisotropic elastoplastic constitutive equations accounting for the strong coupling with the anisotropic ductile damage. This model is developed within the framework of thermodynamics of irreversible processes with state variables and the continuum damage mechanics. The plastic anisotropy is accounted for through a non-associative theory for which a plasticity yield criterion and the plastic potential are defined separately but considering the strong coupling between both phenomena. The damage anisotropy is defined by using a second rank tensor. The effect of damage on the mechanical fields (stress, hardening, plastic strain, etc…) is described by a fourth rank damage effect operator that is defined in the context of the hypothesis of total energy equivalence. A rotating frame formulation is used to fulfil the objectivity of the constitutive equations under finite transformation. Finally, in order to illustrate the predictive capabilities of the model, the parametric studies with some simple loading case are investigated and the results discussed on the light of the anisotropic character of the ductile damage and its interaction with the anisotropy of plastic flow.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In