0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Study of Normal-Hexadecane and Iso-Dodecane Binary Fuel Blends in a Military Diesel Engine

[+] Author Affiliations
Leonard J. Hamilton, Jim S. Cowart, Dianne Luning-Prak, Patrick A. Caton

US Naval Academy, Annapolis, MD

Paper No. ICEF2012-92151, pp. 191-203; 13 pages
doi:10.1115/ICEF2012-92151
From:
  • ASME 2012 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2012 Internal Combustion Engine Division Fall Technical Conference
  • Vancouver, BC, Canada, September 23–26, 2012
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5509-6

abstract

The molecular composition of new hydrotreated renewable fuels consists of both straight chain and branched alkanes. These new fuels do not contain aromatic or cyclo-paraffinic hydro-carbon compounds which are regularly seen in conventional petroleum fuels. Both experimental and modeling work has shown that straight chain alkanes have shorter ignition delays (e.g. higher cetane number) as compared to branched alkanes. In order to better understand the effects of branched and straight chain alkanes fuels in diesel engines, an experimental study was pursued using binary blends of iso-dodecane (iC12H26 with abbreviation: iC12) and normal-hexadecane (nC16H34 with abbreviation nC16) in a military diesel engine (AM General HMMWV ‘Humvee’ engine). Mixtures of 50% iC12 with 50% nC16 as well as 25% iC12 with 75% nC16 were compared to 100% nC16 (cetane) fueled engine operation across the entire speed-load range. Higher nC16 fuel content operation resulted in modestly earlier fuel injection events and combustion phasing that delievered slightly worse engine brake performance (torque and fuel consumption). Interestingly, ignition delay and overall burn durations were relatively insensitive to the binary blends tested. The significantly different physical properties of iC12 relative to nC16 are believed to affect the fuel injection event leading to later fuel injection with increasing iC12 content. Later injection into a hotter chamber mitigates the lower cetane number of the higher iC12 content fuel blends.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In