0

Full Content is available to subscribers

Subscribe/Learn More  >

Particle Scale Heat Transfer Analysis in Rotary Kiln

[+] Author Affiliations
Amit Ravindra Amritkar, Danesh Tafti, Surya Deb

Virginia Tech, Blacksburg, VA

Paper No. HT2012-58137, pp. 953-962; 10 pages
doi:10.1115/HT2012-58137
From:
  • ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer Enhancement for Practical Applications; Fire and Combustion; Multi-Phase Systems; Heat Transfer in Electronic Equipment; Low Temperature Heat Transfer; Computational Heat Transfer
  • Rio Grande, Puerto Rico, USA, July 8–12, 2012
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4478-6
  • Copyright © 2012 by ASME

abstract

Rotary furnaces have multiple applications including calcination, pyrolysis, carburization, drying, etc. Heat transfer through granular media in rotary kilns is a complex phenomenon and plays an important role in the thermal efficiency of rotary furnaces. Thorough mixing of particles in a rotary kiln determines the bed temperature uniformity. Hence it is essential to understand the particle scale heat transfer modes through which the granular media temperature changes. In this study, numerical simulations are performed using coupled Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) to analyze heat transfer in a non-reacting rotary kiln. The microscopic models of particle-particle, particle-fluid, particle-surface and fluid-surface heat transfer are used in the analysis. The heat transfer simulations are validated against experimental data. The effect of particle cascading on the bed temperature is measured and contributions from various modes of particle scale heat transfer mechanisms are reported. Particles are heated near the rotary kiln walls by convection heat transfer as they pass through the thermal boundary layer of the heated fluid. These particles are transported to the center of the kiln where they transfer heat to the cooler particles in the core of the kiln and back to the cooler fluid at the center of the kiln. It is found that 90% of the heat transferred to particles from the kiln walls is a result of convection heat transfer, whereas only 10% of the total heat transfer is due to conduction from the kiln walls.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In