0

Full Content is available to subscribers

Subscribe/Learn More  >

Normalization for Ultrafast Radiative Transfer Analysis With Collimated Irradiation

[+] Author Affiliations
Brian Hunter, Zhixiong Guo

Rutgers, The State University of New Jersey, Piscataway, NJ

Paper No. HT2012-58307, pp. 837-848; 12 pages
doi:10.1115/HT2012-58307
From:
  • ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer Enhancement for Practical Applications; Fire and Combustion; Multi-Phase Systems; Heat Transfer in Electronic Equipment; Low Temperature Heat Transfer; Computational Heat Transfer
  • Rio Grande, Puerto Rico, USA, July 8–12, 2012
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4478-6
  • Copyright © 2012 by ASME

abstract

Normalization of the scattering phase function is applied to the transient discrete ordinates method for ultrafast radiative transfer analysis in a turbid medium subject to a normal collimated incidence. Previously, the authors have developed a normalization technique which accurately conserves both scattered energy and phase function asymmetry factor after directional discretization for the Henyey-Greenstein phase function approximation in steady-state diffuse radiative transfer analysis. When collimated irradiation is considered, additional normalization must be applied to ensure that the collimated phase function also satisfies both scattered energy and asymmetry factor conservation. The authors’ technique is applied to both the diffuse and collimated components of scattering using the general Legendre polynomial phase function approximation for accurate and efficient ultrafast radiative transfer analysis. The impact of phase function normalization on both predicted heat fluxes and overall energy deposition in a model tissue cylinder is investigated for various phase functions and optical properties. A comparison is shown between the discrete ordinates method and the finite volume method. It is discovered that a lack of conservation of asymmetry factor for the collimated component of scattering causes over-predictions in both energy deposition and heat flux for highly anisotropic media.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In