0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Heat Transfer in Evaporator of Microchannel Loop Heat Pipe

[+] Author Affiliations
Alexander A. Yakomaskin, Valery N. Afanasiev, Nikolay N. Zubkov, Dmitry N. Morskoy

Bauman Moscow State Technical University, Moscow, Russia

Paper No. HT2012-58503, pp. 539-546; 8 pages
doi:10.1115/HT2012-58503
From:
  • ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer Enhancement for Practical Applications; Fire and Combustion; Multi-Phase Systems; Heat Transfer in Electronic Equipment; Low Temperature Heat Transfer; Computational Heat Transfer
  • Rio Grande, Puerto Rico, USA, July 8–12, 2012
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4478-6
  • Copyright © 2012 by ASME

abstract

Loop heat pipes (LHP) are closed loop heat transfer devices which use evaporation and condensation of a working fluid to transfer heat and use capillary forces to provide fluid circulation. One of the main applications of LHP is cooling of electronics components. Further development in this field is associated with miniaturization. Therefore in electronics cooling there are strict limits imposed upon size of elements of heat transfer devices. One of such elements is evaporator of LHP, its main element. This paper deals with LHP evaporator and aims to find ways of reducing its thickness. An open loop experimental setup was created to investigate heat transfer phenomena in evaporator. Experiments were carried out with variety of configurations. Evaporator consists of microchannel plates with groove width 100 and 300 micrometers, wick (metal and non-metal porous materials were used) and compensation chamber (CC). Heat load varied from 20 to 140 W by steps of 20 W. The area of heater was equal to 19 mm × 19 mm. Working fluid — deionised water. Experiments resulted in data on temperature distribution across wick’s height, temperature of microchannel’s surface and temperature of water in compensation chamber. The results reveal potentials to perform optimization of evaporating zone to produce thinner evaporators.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In