Full Content is available to subscribers

Subscribe/Learn More  >

Deflagration Analysis of Aluminum Droplet Combustion

[+] Author Affiliations
Birce Dikici

Embry-Riddle Aeronautical University, Daytona Beach, FL

M. L. Pantoya

Texas Tech University, Lubbock, TX

B. D. Shaw

University of California, Davis, CA

Paper No. HT2012-58553, pp. 263-271; 9 pages
  • ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer Enhancement for Practical Applications; Fire and Combustion; Multi-Phase Systems; Heat Transfer in Electronic Equipment; Low Temperature Heat Transfer; Computational Heat Transfer
  • Rio Grande, Puerto Rico, USA, July 8–12, 2012
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4478-6
  • Copyright © 2012 by ASME


The evaporation and combustion of nanometric aluminum particles with an oxidizer MoO3 is analyzed. The analysis was performed to correlate individual Al particle gasification rates to macroscopic flame propagation rates observed in flame tube experiments. Examination of various characteristic times relevant to propagation of a deflagration reveals that particles below about 1.7 nm in diameter evaporate before appreciable chemical reactions occur. Experimental studies use Al particles greater than 1.7 nm in diameter such that a diffusion flame model was developed to better understand the combustion dynamics of multiphase Al particles. The results showed that it is unlikely that droplets will fully evaporate before reacting in the gas phase. A droplet evaporation and combustion model was further applied to quantify single droplet reaction velocities in comparison to the bulk flame propagation measurements observed in the literature. The diffusion flame model predicted orders of magnitude slower propagation rates than experimentally observed. These results imply that another reaction mechanism is responsible for promoting reaction propagation or modes other than diffusion play a more dominant role in flame propagation.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In